The Auslander-type condition of triangular matrix rings
نویسندگان
چکیده
منابع مشابه
iv : 0 90 3 . 45 15 v 1 [ m at h . R A ] 2 6 M ar 2 00 9 The Auslander - Type Condition of Triangular Matrix Rings ∗ †
Let R be a left and right Noetherian ring and n, k any non-negative integers. R is said to satisfy the Auslander-type condition Gn(k) if the right flat dimension of the (i+1)-st term in a minimal injective resolution of RR is at most i+ k for any 0 ≤ i ≤ n− 1. In this paper, we prove that R is Gn(k) if and only if so is a lower triangular matrix ring of any degree t over R.
متن کاملStrongly clean triangular matrix rings with endomorphisms
A ring $R$ is strongly clean provided that every element in $R$ is the sum of an idempotent and a unit that commutate. Let $T_n(R,sigma)$ be the skew triangular matrix ring over a local ring $R$ where $sigma$ is an endomorphism of $R$. We show that $T_2(R,sigma)$ is strongly clean if and only if for any $ain 1+J(R), bin J(R)$, $l_a-r_{sigma(b)}: Rto R$ is surjective. Furt...
متن کاملOn Skew Triangular Matrix Rings
For a ring R, endomorphism α of R and positive integer n we define a skew triangular matrix ring Tn(R,α). By using an ideal theory of a skew triangular matrix ring Tn(R,α) we can determine prime, primitive, maximal ideals and radicals of the ring R[x;α]/〈xn〉, for each positive integer n, where R[x;α] is the skew polynomial ring, and 〈xn〉 is the ideal generated by xn.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Mathematics
سال: 2012
ISSN: 1674-7283,1869-1862
DOI: 10.1007/s11425-012-4419-6